x^2=(7x-32)(3x-16)

Simple and best practice solution for x^2=(7x-32)(3x-16) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2=(7x-32)(3x-16) equation:



x^2=(7x-32)(3x-16)
We move all terms to the left:
x^2-((7x-32)(3x-16))=0
We multiply parentheses ..
x^2-((+21x^2-112x-96x+512))=0
We calculate terms in parentheses: -((+21x^2-112x-96x+512)), so:
(+21x^2-112x-96x+512)
We get rid of parentheses
21x^2-112x-96x+512
We add all the numbers together, and all the variables
21x^2-208x+512
Back to the equation:
-(21x^2-208x+512)
We get rid of parentheses
x^2-21x^2+208x-512=0
We add all the numbers together, and all the variables
-20x^2+208x-512=0
a = -20; b = 208; c = -512;
Δ = b2-4ac
Δ = 2082-4·(-20)·(-512)
Δ = 2304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{2304}=48$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(208)-48}{2*-20}=\frac{-256}{-40} =6+2/5 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(208)+48}{2*-20}=\frac{-160}{-40} =+4 $

See similar equations:

| 34=x+26 | | 81=3(t-73) | | 4x+3x-10x=0 | | 5x+2x+3-4=13 | | 17u+u-15u+-4u=-3 | | a+5(2a-1)-3=11a-2 | | 39-w=279 | | 2x+2x-13=15+2x | | 45=x+28 | | 20=2v-4 | | -3r+-15=-37 | | 8x-4x+4=24 | | 4+(-3x)=6 | | 2=3m-13 | | 25x=(2x+4)(x+2) | | 1/4(a)=-6 | | −2m+14=10 | | x^2−x−100=-x | | 0.14=11/x | | 3+2q=15 | | 12,5+y=45 | | 2(d-4)=6(d+2) | | 6x–x=6x | | 9=4y/y | | 3y=183/5 | | x+35=910 | | 14b+3b-10b-7b+b=9 | | (2x)x12=42 | | 0.025x+22.95=23.67 | | 10(w-2)=10 | | 5(2x+1)=3(4x+2) | | 2x–18=x+11 |

Equations solver categories